Premium
Development of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging
Author(s) -
Cui Dong,
Xie Chen,
Pu Kanyi
Publication year - 2017
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.201700125
Subject(s) - photoacoustic imaging in biomedicine , nanoparticle , materials science , polymer , nanotechnology , polymer science , optics , composite material , physics
Semiconducting polymer nanoparticles (SPNs) have evolved into a new class of photonic materials with great potential for biomedical applications. Depending on the polymer structures, SPNs can be developed into optical agents for fluorescence and chemiluminescence imaging, photosensitizers for photodynamic therapy, and heat converters for photothermal therapy. In this feature article, recent work is summarized on the development of SPNs for in vivo photoacoustic (PA) imaging, a state‐of‐the‐art imaging modality that converts light energy into mechanical acoustic waves to provide deep tissue penetration. The structure–property relationship and doping approaches are discussed to reveal the importance of promoting nonradiative decay in amplifying the PA brightness of SPNs. Moreover, their imaging applications, including lymph node mapping, tumor imaging, and monitoring of pathological indexes, are highlighted. These studies demonstrate that SPNs can serve as versatile PA agents for advanced molecular imaging applications.