Premium
A Functionalized Cyclic Lactide Monomer for Synthesis of Water‐Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid)
Author(s) -
Zhang Xiaojin,
Dai Yu
Publication year - 2017
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.201600593
Subject(s) - lactic acid , lactide , monomer , amphiphile , polymer chemistry , polymerization , ring opening polymerization , micelle , chemistry , copolymer , materials science , polymer , organic chemistry , aqueous solution , bacteria , genetics , biology
Biodegradable and bioabsorbable poly(lactic acid)s are one of the most important biomedical materials. However, it is difficult to introduce the functional groups into poly(lactic acid)s in order to improve their hydrophilicity and degradation rate. Here the authors describe the synthesis of functionalized cyclic lactide monomer 3,6‐bis(benzyloxymethyl)‐1,4‐dioxane‐2,5‐dione (BnLA) using an advanced synthetic route. Water‐soluble hydroxyl‐functionalized homopoly(lactic acid) (P(OH)LA) is synthesized via ring‐opening polymerization (ROP) of BnLA, followed by a hydrogenolytic deprotection reaction. Amphiphilic diblock poly(lactic acid) (P(OH)LA‐PLA) is synthesized via ROP of DL‐lactide using PBnLA as an initiator, followed by a hydrogenolytic deprotection reaction. P(OH)LA‐PLA is able to form polymeric micelles with the diameter of sub‐100 nm.