Premium
Patterning Surfaces on Azo‐Based Multilayer Films via Surface Wrinkling Combined with Visible Light Irradiation
Author(s) -
Zong Chuanyong,
Zhao Yan,
Ji Haipeng,
Xie Jixun,
Han Xue,
Wang Juanjuan,
Cao Yanping,
Lu Conghua,
Li Hongfei,
Jiang Shichun
Publication year - 2016
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.201600229
Subject(s) - irradiation , visible spectrum , materials science , optics , composite material , optoelectronics , physics , nuclear physics
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo‐containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization‐induced stress release in the intermediate layer to some extent. Consequently, the as‐formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer‐based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures.