Premium
Photocrosslinkable Liquid Crystal Main‐Chain Polymers: Thin Films and Electrospinning
Author(s) -
Krause Simon,
Dersch Roland,
Wendorff Joachim H.,
Finkelmann Heino
Publication year - 2007
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.200700460
Subject(s) - materials science , electrospinning , elastomer , liquid crystal , polymer , composite material , thin film , moiety , phase transition , curing (chemistry) , side chain , polymer chemistry , chemical engineering , nanotechnology , optoelectronics , organic chemistry , chemistry , physics , quantum mechanics , engineering
For mechanical actuators, a response to external stimuli is required. Main‐chain liquid crystal elastomers (MCLCEs) show high response to changes in temperature especially in the vicinity of a phase transition. Most of these crosslinked materials were synthesized in a one‐step reaction which leads to a macroscopically aligned elastomer. Up to now only macroscopic samples have been prepared. We are presenting a new approach which allows us to prepare thin films as well as aligned fibers. First a liquid crystalline main‐chain polymer with a photoactive moiety was synthesized, which was oriented by a mechanical field and photocrosslinked. The thin films show exceptional mechanical properties such as large temperature‐dependent changes in length and a nonlinear stress–strain relation. To obtain fibers, we used the electrospinning process from solution with in situ UV curing. We obtained crosslinked fibers with a uniform alignment of the nematic director.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom