Premium
The Influence of Interchain Branches on Solid State Packing, Hole Mobility and Photovoltaic Properties of Poly(3‐hexylthiophene) (P3HT)
Author(s) -
Tu Guoli,
Bilge Askin,
Adamczyk Sylwia,
Forster Michael,
Heiderhoff Ralf,
Balk Ludwig Josef,
Mühlbacher David,
Morana Mauro,
Koppe Markus,
Scharber Markus C.,
Choulis Stelios A.,
Brabec Christoph J.,
Scherf Ullrich
Publication year - 2007
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.200700239
Subject(s) - polythiophene , materials science , polymer solar cell , fullerene , energy conversion efficiency , electron mobility , solar cell , acceptor , organic solar cell , photovoltaic system , polymer , copolymer , charge carrier , hybrid solar cell , solid state , polymer chemistry , chemical engineering , conductive polymer , optoelectronics , organic chemistry , chemistry , composite material , engineering , biology , condensed matter physics , ecology , physics
The hole mobility and power conversion efficiency of bulk heterojunction solar cells based on P3HT‐type donor polymers and the soluble fullerene derivative [6,6]‐phenyl C 61 butyric acid methyl ester (PCBM) as an acceptor both show a strong sensitivity to the introduction of interchain branches into the P3HT backbones. Branched B‐P3HT copolymers display a distinctly decreased hole mobility and reduced solar cell power conversion efficiency with increasing amount of interchain 3.3′‐bithiophene branches within the polythiophene macromolecules. The results illustrate the primary importance of proper solid state packing towards optimum charge transport and solar cell performance.