Premium
Direct Synthesis of Pyridyl Disulfide‐Terminated Polymers by RAFT Polymerization
Author(s) -
Liu Jingquan,
Bulmus Volga,
BarnerKowollik Christopher,
Stenzel Martina H.,
Davis Thomas P.
Publication year - 2007
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.200600693
Subject(s) - copolymer , raft , reversible addition−fragmentation chain transfer polymerization , polymer chemistry , amphiphile , polymerization , polymer , acrylate , peg ratio , materials science , chain transfer , chemistry , radical polymerization , organic chemistry , finance , economics
A trithiocarbonate RAFT agent was modified with a pyridyl disulfide group and used in the direct synthesis of endgroup pyridyl disulfide‐functionalized homo‐ and amphiphilic block copolymers of oligo(ethyleneglycol) acrylate (PEG‐A) and butyl acrylate (BA). Both the homo‐ and copolymerizations were found to be well controlled via the RAFT mechanism. The NMR analysis indicated that both the homopolymers of PEG‐A and the amphiphilic diblock copolymers of PEG‐A and BA possessed pyridyl disulfide terminal groups. A UV‐Vis absorption test revealed that the pyridyl disulfide endgroup of the polymer could be efficiently used to couple thiol‐bearing molecules to the polymer without the need for any post‐polymerization modification. This communication presents the first efficient direct synthesis of thiol‐reactive endgroup‐functionalized well‐defined polymers via the RAFT technique.