Premium
Controlled Radical Polymerization of 2,3‐Epithiopropyl Methacrylate
Author(s) -
Tebaldi de Sordi Marli Luiza,
Ceschi Marco Antônio,
Petzhold Cesar Liberato,
Müller Axel H. E.
Publication year - 2007
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.200600641
Subject(s) - chain transfer , polymer chemistry , chemistry , radical polymerization , reversible addition−fragmentation chain transfer polymerization , polymerization , living free radical polymerization , atom transfer radical polymerization , methacrylate , cobalt mediated radical polymerization , bulk polymerization , living polymerization , polymer , organic chemistry
We report first results on the controlled radical polymerization of 2,3‐epithiopropyl methacrylate (ETMA) also known as thiiran‐2‐ylmethyl methacrylate. Reversible addition‐fragmentation chain transfer (RAFT) of ETMA was carried out in bulk and in solution, using AIBN as initiator and the chain transfer agents: cyanopropyl dithiobenzoate (CPDB) and cumyl dithiobenzoate (CDB). A linear increase of the number‐average molecular weight and decrease of the polydispersity with monomer conversion were observed using CPDB as transfer agent, indicating a controlled process. Atom transfer radical polymerization (ATRP) of ETMA was performed under different reaction conditions using copper bromide complexed by tertiary amine ligands and ethyl 2‐bromoisobutyrate (EBiB) or 2‐bromopropionitrile (BPN) as initiator. All experiments lead to a crosslinked polymer. Preliminary studies in the absence of initiator showed that the CuBr/ligand complex alone initiates the ring‐opening polymerization of thiirane leading to a poly(propylene sulfide) with pendant methacrylate groups.