Premium
Frozen‐In Magnetic Order in Uniaxial Magnetic Gels: Preparation and Physical Properties
Author(s) -
Collin Dominique,
Auernhammer Günter K.,
Gavat Odile,
Martinoty Philippe,
Brand Helmut R.
Publication year - 2003
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.200350016
Subject(s) - anisotropy , isotropy , materials science , magnetic field , homogeneous , shear modulus , ferromagnetism , magnetic anisotropy , magnetic nanoparticles , magnetization , characterization (materials science) , condensed matter physics , elastic modulus , orientation (vector space) , magnetostatics , nuclear magnetic resonance , composite material , optics , nanotechnology , physics , nanoparticle , thermodynamics , geometry , quantum mechanics , mathematics
We describe the preparation and characterization of uniaxial magnetic gels. Fibril formation of the embedded magnetic particles generates easily detectable magnetic and optical anisotropies. A finite magnetization is frozen‐in and leads to a ferromagnetic‐like response in small homogeneous external magnetic fields. We present, for the first time, frequency dependent measurements of the shear modulus G ′. Despite their optical and magnetic anisotropy, the gels are mechanically isotropic.The time‐dependent G ′ for a ferrogel in the parallel orientation in a homogeneous field of 200 mT.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom