Premium
An Iteration Method for Bifurcation Problem Involving Fredholm Mappings
Author(s) -
Tan Nguyen Xuan
Publication year - 1990
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.3211480113
Subject(s) - mathematics , bifurcation , constructive , parametric statistics , mathematical analysis , bifurcation theory , pure mathematics , nonlinear system , process (computing) , statistics , physics , quantum mechanics , computer science , operating system
Using the idea of the Liapunov‐Schmidt procedure and the modification of the Seidel‐Newton methods we show the existence of bifurcation solutions of equations of the form\documentclass{article}\pagestyle{empty}\begin{document}$$T\left( u \right) = L\left( {\lambda,u} \right) + H\left( {\lambda,u} \right).$$\end{document}Let λ be a characteristic value of the pair ( T, L ) (i.g. T(u) = L (λ, u .) for some u ± 0). Under sufficient conditions on T, L, H we prove by a constructive method that (λ, 0) is a bifurcation solution of the above equations. Furthermore, we obtain an analytical form of a parametric family of nontrivial solutions in a neighborhood of (λ, 0).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom