Premium
An Iteration Method for Bifurcation Problem Involving Fredholm Mappings
Author(s) -
Tan Nguyen Xuan
Publication year - 1990
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.3211480113
Subject(s) - mathematics , bifurcation , constructive , parametric statistics , mathematical analysis , bifurcation theory , pure mathematics , nonlinear system , process (computing) , statistics , physics , quantum mechanics , computer science , operating system
Using the idea of the Liapunov‐Schmidt procedure and the modification of the Seidel‐Newton methods we show the existence of bifurcation solutions of equations of the form\documentclass{article}\pagestyle{empty}\begin{document}$$T\left( u \right) = L\left( {\lambda,u} \right) + H\left( {\lambda,u} \right).$$\end{document}Let λ be a characteristic value of the pair ( T, L ) (i.g. T(u) = L (λ, u .) for some u ± 0). Under sufficient conditions on T, L, H we prove by a constructive method that (λ, 0) is a bifurcation solution of the above equations. Furthermore, we obtain an analytical form of a parametric family of nontrivial solutions in a neighborhood of (λ, 0).