z-logo
Premium
Entropy numbers of diagonal operators on Orlicz sequence spaces
Author(s) -
Kaewtem Thanatkrit,
Netrusov Yuri
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900367
Subject(s) - mathematics , diagonal , sequence (biology) , entropy (arrow of time) , real number , pure mathematics , combinatorics , geometry , genetics , physics , quantum mechanics , biology
Let M 1 and M 2 be functions on [0,1] such thatM 1 ( t 1 / p ) andM 2 ( t 1 / p ) are Orlicz functions for some p ∈ ( 0 , 1 ] . Assume thatM 2 − 1( 1 / t ) / M 1 − 1( 1 / t )is non‐decreasing for t ≥ 1 . Let( α i ) i = 1 ∞ be a non‐increasing sequence of nonnegative real numbers. Under some conditions on( α i ) i = 1 ∞ , sharp two‐sided estimates for entropy numbers of diagonal operatorsT α : ℓM 1→ ℓM 2generated by( α i ) i = 1 ∞ , where ℓM 1and ℓM 2are Orlicz sequence spaces, are proved. The results generalise some works of Edmunds and Netrusov in [8] and hence a result of Cobos, Kühn and Schonbek in [6].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom