z-logo
Premium
Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity
Author(s) -
Gu Guangze,
Tang Xianhua,
Yang Xianyong
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900273
Subject(s) - mathematics , infinity , mathematical analysis , operator (biology) , nonlinear system , laplace's equation , laplace transform , partial differential equation , physics , chemistry , repressor , quantum mechanics , transcription factor , gene , biochemistry
In this paper, we consider the following fractional Kirchhoff equation with critical nonlinearitya + b ∫ R 3( − Δ ) s 2 u 2d x( − Δ ) s u + V ( x ) u = Q ( x ) f ( u ) + | u |2 s ∗ − 2 u , x ∈ R 3 ,where a , b > 0 ,( − Δ ) s is the fractional Laplace operator with s ∈ ( 3 4 , 1 ) , V vanishes at infinity and2 s ∗ = 6 3 − 2 s. Under appropriate assumptions on f , we prove the existence of positive solution by using the variational method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom