Premium
Noncompact quasi‐Einstein manifolds conformal to a Euclidean space
Author(s) -
Ribeiro Jr Ernani,
Tenenblat Keti
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900189
Subject(s) - conformal map , mathematics , einstein , invariant (physics) , pure mathematics , euclidean space , euclidean geometry , ricci flat manifold , action (physics) , space (punctuation) , einstein manifold , mathematical physics , mathematical analysis , geometry , ricci curvature , physics , scalar curvature , quantum mechanics , curvature , computer science , operating system
Abstract The goal of this article is to investigate nontrivial m ‐quasi‐Einstein manifolds globally conformal to an n ‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an ( n − 1 ) ‐dimensional translation group, we provide a complete classification when λ = 0 and m ≥ 1 or m = 2 − n .