z-logo
Premium
Noncompact quasi‐Einstein manifolds conformal to a Euclidean space
Author(s) -
Ribeiro Jr Ernani,
Tenenblat Keti
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900189
Subject(s) - conformal map , mathematics , einstein , invariant (physics) , pure mathematics , euclidean space , euclidean geometry , ricci flat manifold , action (physics) , space (punctuation) , einstein manifold , mathematical physics , mathematical analysis , geometry , ricci curvature , physics , scalar curvature , quantum mechanics , curvature , computer science , operating system
The goal of this article is to investigate nontrivial m ‐quasi‐Einstein manifolds globally conformal to an n ‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an ( n − 1 ) ‐dimensional translation group, we provide a complete classification when λ = 0 and m ≥ 1 or m = 2 − n .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom