z-logo
Premium
Functions of noncommuting operators under perturbation of class S p
Author(s) -
Aleksandrov A. B.,
Peller V. V.
Publication year - 2020
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900074
Subject(s) - mathematics , class (philosophy) , von neumann architecture , pure mathematics , perturbation (astronomy) , homogeneous , operator theory , algebra over a field , mathematical analysis , combinatorics , physics , quantum mechanics , artificial intelligence , computer science
In this article we prove that for p > 2 , there exist pairs of self‐adjoint operators ( A 1 , B 1 ) and ( A 2 , B 2 ) and a function f on the real line in the homogeneous Besov classB ∞ , 1 1 ( R 2 )such that the differencesA 2 − A 1andB 2 − B 1belong to the Schatten–von Neumann class S p but f ( A 2 , B 2 ) − f ( A 1 , B 1 ) ∉ S p . A similar result holds for functions of contractions. We also obtain an analog of this result in the case of triples of self‐adjoint operators for any p ≥ 1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom