z-logo
Premium
Transition probability estimates for subordinate random walks
Author(s) -
Cygan Wojciech,
Šebek Stjepan
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900065
Subject(s) - random walk , mathematics , simple random sample , integer lattice , heterogeneous random walk in one dimension , transition (genetics) , harnack's inequality , lattice (music) , statistical physics , combinatorics , discrete mathematics , pure mathematics , statistics , half integer , biochemistry , chemistry , gene , population , physics , demography , quantum mechanics , sociology , acoustics
Abstract Let S n be a symmetric simple random walk on the integer lattice Z d . For a Bernstein function ϕ we consider a random walk S n ϕ which is subordinated to S n . Under a certain assumption on the behaviour of ϕ at zero we establish global estimates for the transition probabilities of the random walk S n ϕ . The main tools that we apply are a parabolic Harnack inequality and appropriate bounds for the transition kernel of the corresponding continuous time random walk.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here