z-logo
Premium
On the dimension of self‐similar measures with complicated overlaps
Author(s) -
Bárány Balázs,
Szvák Edina
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900062
Subject(s) - mathematics , iterated function system , hausdorff dimension , dimension function , iterated function , packing dimension , invariant (physics) , outer measure , dimension (graph theory) , effective dimension , pure mathematics , minkowski–bouligand dimension , hausdorff space , hausdorff measure , fractal dimension , mathematical analysis , fractal , mathematical physics
In this paper, we investigate the Hausdorff dimension of the invariant measures of the iterated function system (IFS) { α x , β x , γ x + ( 1 − γ ) } . We provide an “almost every” type result by a direct application of the results of Feng and Hu [5] and Kamalutdinov and Tetenov [9].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom