Premium
On the dimension of self‐similar measures with complicated overlaps
Author(s) -
Bárány Balázs,
Szvák Edina
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900062
Subject(s) - mathematics , iterated function system , hausdorff dimension , dimension function , iterated function , packing dimension , invariant (physics) , outer measure , dimension (graph theory) , effective dimension , pure mathematics , minkowski–bouligand dimension , hausdorff space , hausdorff measure , fractal dimension , mathematical analysis , fractal , mathematical physics
In this paper, we investigate the Hausdorff dimension of the invariant measures of the iterated function system (IFS) { α x , β x , γ x + ( 1 − γ ) } . We provide an “almost every” type result by a direct application of the results of Feng and Hu [5] and Kamalutdinov and Tetenov [9].