z-logo
Premium
Regularity and continuity of commutators of the Hardy–Littlewood maximal function
Author(s) -
Liu Feng,
Xue Qingying,
Zhang Pu
Publication year - 2020
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201900013
Subject(s) - commutator , mathematics , bounded mean oscillation , sobolev space , hardy space , bounded function , space (punctuation) , pure mathematics , mathematical analysis , maximal function , function (biology) , besov space , measurable function , interpolation space , functional analysis , algebra over a field , linguistics , philosophy , lie conformal algebra , biochemistry , chemistry , evolutionary biology , gene , biology
Let M be the Hardy–Littlewood maximal function and let [ b , M ] be its corresponding commutator. For 1 < p 1 , p 2 , p , q < ∞ and 1 / p = 1 / p 1 + 1 / p 2 , we show that the commutator [ b , M ] is bounded and continuous from Sobolev spaceW s , p 1( R d )to Sobolev spaceW s , p ( R d ) for 0 ≤ s ≤ 1 when b ∈ W s , p 2( R d ) , from Triebel–Lizorkin spaceF s p 1 , q ( R d ) toF s p , q ( R d ) if b ∈ F s p 2 , q ( R d ) and from Besov spaceB s p 1 , q ( R d ) toB s p , q ( R d ) if b ∈ B s p 2 , q ( R d ) and 0 < s < 1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom