z-logo
Premium
Notes on bilinear multipliers on Orlicz spaces
Author(s) -
Blasco Oscar,
Osançlıol Alen
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800551
Subject(s) - mathematics , bilinear interpolation , multiplier (economics) , lp space , pure mathematics , type (biology) , class (philosophy) , bilinear map , function space , symmetric bilinear form , bounded function , space (punctuation) , bilinear form , algebra over a field , mathematical analysis , banach space , computer science , ecology , statistics , biology , operating system , economics , macroeconomics , artificial intelligence
LetΦ 1 , Φ 2and Φ 3 be Young functions and letL Φ 1( R ) ,L Φ 2( R )andL Φ 3( R )be the corresponding Orlicz spaces. We say that a function m ( ξ , η ) defined on R × R is a bilinear multiplier of type ( Φ 1 , Φ 2 , Φ 3 )  ifB m ( f , g ) ( x ) = ∫ R ∫ R f ̂ ( ξ ) g ̂ ( η ) m ( ξ , η ) e 2 π i ( ξ + η ) x d ξ d η defines a bounded bilinear operator fromL Φ 1( R ) × L Φ 2( R )toL Φ 3( R ) . We denote byBM ( Φ 1 , Φ 2 , Φ 3 )( R )the space of all bilinear multipliers of type ( Φ 1 , Φ 2 , Φ 3 ) and investigate some properties of such a class. Under some conditions on the triple ( Φ 1 , Φ 2 , Φ 3 ) we give some examples of bilinear multipliers of type ( Φ 1 , Φ 2 , Φ 3 ) . We will focus on the case m ( ξ , η ) = M ( ξ − η ) and get necessary conditions on ( Φ 1 , Φ 2 , Φ 3 ) to get non‐trivial multipliers in this class. In particular we recover some of the known results for Lebesgue spaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here