Premium
Lattice points in bodies of revolution II
Author(s) -
Chamizo Fernando,
Pastor Carlos
Publication year - 2020
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800541
Subject(s) - mathematics , convex body , diophantine equation , lattice (music) , mathematical analysis , fourier transform , regular polygon , pure mathematics , geometry , convex hull , physics , acoustics
In [3] it was shown that when a three‐dimensional smooth convex body has rotational symmetry around a coordinate axis one can find better bounds for the lattice point discrepancy than what is known for more general convex bodies. To accomplish this, however, it was necessary to assume a non‐vanishing condition on the third derivative of the generatrix. In this article we drop this condition, showing that the aforementioned bound holds for a wider family of revolution bodies, which includes those with analytic boundary. A novelty in our approach is that, besides the usual analytic methods, it requires studying some Diophantine properties of the Taylor coefficients of the phase on the Fourier transform side.