z-logo
Premium
Twisted Hodge filtration: Curvature of the determinant
Author(s) -
Naumann Philipp
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800418
Subject(s) - mathematics , filtration (mathematics) , pure mathematics , curvature , holomorphic function , line bundle , riemann curvature tensor , hermitian matrix , hermitian manifold , mathematical analysis , geometry , ricci curvature
Given a holomorphic family f : X → S of compact complex manifolds and a relatively ample line bundle L → X , the higher direct imagesR n − pf ∗ Ω X / S p ( L )carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the twisted Hodge filtrationF L p = ⨁ i ≥ pR n − if ∗ Ω X / S i ( L )is (semi‐)positive on the base S if L itself is (semi‐)positive on X .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom