z-logo
Premium
The Calderón–Zygmund estimates for a class of nonlinear elliptic equations with measure data
Author(s) -
Liang Shuang,
Zheng Shenzhou
Publication year - 2021
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800334
Subject(s) - mathematics , measure (data warehouse) , sobolev space , nonlinear system , class (philosophy) , mathematical analysis , order (exchange) , constant (computer programming) , radon measure , integrable system , pure mathematics , finance , quantum mechanics , database , artificial intelligence , computer science , economics , programming language , locally compact space , physics
We study a class of nonlinear elliptic equations involving measure data− divA ( x , D u ) = μ in Ω , where μ is a Radon measure. Under the main assumption of A ( x , ξ ) that there exists a constant Λ > 0 such that| A ( x , ξ ) − A ( x 0 , ξ ) | ≤ Λ ( a ( x ) + a ( x 0 ) ) | x − x 0 | α( | ξ | 2 + s 2 )p − 1 2 , α ∈ ( 0 , 1 ] , where 0 ≤ a ( x ) ∈ L m ( Ω )for some integrable index m > 1 , we obtain the Calderón–Zygmund estimates in the Sobolev–Morrey spaces for refined fractional‐order derivatives of distributional solutions depending on α.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here