z-logo
Premium
Quantitative Bessaga–Pełczyński property and quantitative Rosenthal property
Author(s) -
Chen Dongyang,
Ruan Yingbin
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800312
Subject(s) - property (philosophy) , mathematics , hausdorff space , hausdorff measure , pure mathematics , hausdorff dimension , epistemology , philosophy
We prove that c 0 and C ( K ) , where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l 1 possesses a quantitative version of the Pełczyński property. Finally, we show thatL 1 ( μ )has a quantitative version of the Rosenthal property for any finite measure μ.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom