Premium
Topological properties of strongly monotone planar vector fields
Author(s) -
Balanov Z.,
Bolshakov A.,
Rachinskii D.
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800126
Subject(s) - mathematics , monotone polygon , fixed point , monotonic function , vector field , attractor , plane (geometry) , planar , pure mathematics , field (mathematics) , matrix (chemical analysis) , mathematical analysis , topology (electrical circuits) , combinatorics , geometry , computer science , computer graphics (images) , materials science , composite material
We consider strongly monotone continuous planar vector fields with a finite number of fixed points. The fixed points fall into three classes, attractors, repellers and saddles. Naturally, the relative positions of the fixed points must obey a set of restrictions imposed by monotonicity. The study of these restrictions is the main goal of the paper. With any given vector field, we associate a matrix describing the arrangement of the fixed points on the plane. We then use these matrices to formulate simple necessary and sufficient conditions which allow one to determine whether a finite set of attractors, repellers and saddles at given positions on the plane can be realized as the fixed point set of a strongly monotone vector field.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom