Premium
Lower bound of measure and embeddings of Sobolev, Besov and Triebel–Lizorkin spaces
Author(s) -
Karak Nijjwal
Publication year - 2020
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800121
Subject(s) - mathematics , sobolev space , measure (data warehouse) , geodesic , besov space , space (punctuation) , metric (unit) , domain (mathematical analysis) , pure mathematics , metric space , type (biology) , interpolation space , upper and lower bounds , mathematical analysis , functional analysis , computer science , data mining , ecology , biochemistry , chemistry , operations management , biology , gene , economics , operating system
In this article, we study the relation between Sobolev‐type embeddings for Sobolev spaces or Hajłasz–Besov spaces or Hajłasz–Triebel–Lizorkin spaces defined on a doubling and geodesic metric measure space and lower bound for measure of balls either in the whole space or in a domain inside the space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom