Premium
Lower bound of measure and embeddings of Sobolev, Besov and Triebel–Lizorkin spaces
Author(s) -
Karak Nijjwal
Publication year - 2020
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800121
Subject(s) - mathematics , sobolev space , measure (data warehouse) , geodesic , besov space , space (punctuation) , metric (unit) , domain (mathematical analysis) , pure mathematics , metric space , type (biology) , interpolation space , upper and lower bounds , mathematical analysis , functional analysis , computer science , data mining , ecology , biochemistry , chemistry , operations management , biology , gene , economics , operating system
In this article, we study the relation between Sobolev‐type embeddings for Sobolev spaces or Hajłasz–Besov spaces or Hajłasz–Triebel–Lizorkin spaces defined on a doubling and geodesic metric measure space and lower bound for measure of balls either in the whole space or in a domain inside the space.