z-logo
Premium
Well‐posedness of fractional integro‐differential equations in vector‐valued functional spaces
Author(s) -
Bu Shangquan,
Cai Gang
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800104
Subject(s) - mathematics , lp space , multiplier (economics) , banach space , function space , pure mathematics , mathematical analysis , fractional calculus , besov space , lebesgue integration , interpolation space , functional analysis , biochemistry , chemistry , gene , economics , macroeconomics
We study the well‐posedness of the fractional differential equations with infinite delay( P α ) :D α u ( t )=A u ( t ) + ∫ − ∞ t a ( t − s ) A u ( s )d s+∫ − ∞ t b ( t − s ) B u ( s )d s + f ( t ) ,( 0 ≤ t ≤ 2 π ) ,on Lebesgue–Bochner spacesL p ( T ; X )and Besov spacesB p , q s ( T ; X ) , where A and B are closed linear operators on a Banach space X satisfying D ( A ) ∩ D ( B ) ≠ { 0 } ,  α > 0 and a , b ∈ L 1 ( R + ) . Under suitable assumptions on the kernels a and b , we completely characterize the well‐posedness of ( P α ) in the above vector‐valued function spaces on T by using known operator‐valued Fourier multiplier theorems. We also give concrete examples where our abstract results may be applied.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here