Premium
Minimal kernels of Dirac operators along maps
Author(s) -
Wittmann Johannes
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800069
Subject(s) - dirac operator , mathematics , clifford analysis , manifold (fluid mechanics) , dirac (video compression format) , dimension (graph theory) , upper and lower bounds , riemannian manifold , operator (biology) , pure mathematics , index (typography) , dirac algebra , atiyah–singer index theorem , mathematical analysis , mathematical physics , dirac equation , physics , quantum mechanics , computer science , mechanical engineering , biochemistry , chemistry , repressor , neutrino , transcription factor , engineering , gene , world wide web
Let M be a closed spin manifold and let N be a closed manifold. For maps f : M → N and Riemannian metrics g on M and h on N , we consider the Dirac operatorD ̸ g , h f of the twisted Dirac bundle Σ M ⊗ R f ∗ TN . To this Dirac operator one can associate an index inKO − dim ( M )( pt ) . If M is 2‐dimensional, one gets a lower bound for the dimension of the kernel ofD ̸ g , h f out of this index. We investigate the question whether this lower bound is obtained for generic tupels ( f , g , h ) .