z-logo
Premium
Lindelöf theorems for monotone Sobolev functions in Orlicz spaces on uniform domains
Author(s) -
Futamura Toshihide,
Shimomura Tetsu
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201800014
Subject(s) - mathematics , sobolev space , monotone polygon , type (biology) , lebesgue integration , pure mathematics , domain (mathematical analysis) , function (biology) , boundary (topology) , mathematical analysis , geometry , ecology , evolutionary biology , biology
In this paper, we are concerned with Lindelöf type theorems for monotone (in the sense of Lebesgue) Sobolev functions u on a uniform domain D ⊂ R nsatisfying∫ D| ∇ u ( z ) | n − 1 φ ( | ∇ u ( z ) | ) ω δ D ( z )d z < ∞ ,where ∇ denotes the gradient,δ D ( z )denotes the distance from z to the boundary ∂ D , φ is of log‐type and ω is a weight function satisfying the doubling condition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom