Premium
Stability analysis of coupled structural acoustics PDE models under thermal effects and with no additional dissipation
Author(s) -
Avalos George,
Geredeli Pelin G.
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201700489
Subject(s) - thermoelastic damping , dissipation , boundary value problem , partial differential equation , wave equation , boundary (topology) , mathematical analysis , heat equation , mathematics , structural acoustics , acoustic wave , coupling (piping) , physics , classical mechanics , mechanics , vibration , acoustics , thermal , materials science , thermodynamics , metallurgy
In this study we consider a coupled system of partial differential equations (PDE's) which describes a certain structural acoustics interaction. One component of this PDE system is a wave equation, which serves to model the interior acoustic wave medium within a given three dimensional chamber Ω. This acoustic wave equation is coupled on a boundary interface Γ 0 to a two dimensional system of thermoelasticity: this thermoelastic PDE is composed in part of a structural beam or plate equation, which governs the vibrations of flexible wall portion Γ 0 of the chamber Ω. Moreover, this elastic dynamics is coupled to a heat equation which also evolves on Γ 0 , and which imparts a thermal damping onto the entire structural acoustic system. As we said, the interaction between the wave and thermoelastic PDE components takes place on the boundary interface Γ 0 , and involves coupling boundary terms which are above the level of finite energy. We analyze the stability properties of this coupled structural acoustics PDE model, in the absence of any additive feedback dissipation on the hard walls Γ 1 of the boundary ∂ Ω = Γ 0 ∪ Γ 1 . Under a certain geometric assumption on Γ 1 , an assumption which has appeared in the literature in connection with structural acoustic flow, and which allows for the invocation of a recently derived microlocal boundary trace estimate, we show that classical solutions of this thermally damped structural acoustics PDE decay uniformly to zero, with a rational rate of decay.