Premium
Some characterizations of BLO space
Author(s) -
Wang Dinghuai,
Zhou Jiang,
Teng Zhidong
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201700318
Subject(s) - mathematics , lp space , corollary , norm (philosophy) , function space , space (punctuation) , lebesgue's number lemma , lebesgue integration , pure mathematics , standard probability space , discrete mathematics , riemann integral , banach space , operator theory , computer science , epistemology , philosophy , fourier integral operator , operating system
For 0 < p < ∞ , a real‐valued function f ∈ L loc 1belongs to B L O pspace if∥ f ∥B L O p : = sup Q1 | Q |∫ Qf ( x ) − essinf y ∈ Q f ( y )p d x1 / p < ∞ . In this paper, we establish a version of John–Nirenberg inequality suitable for the B L O pspace with 0 < p ≤ 1 . As a corollary, it is proved thatB L O p spaces are independent of the scale p ∈ ( 0 , ∞ ) in sense of norm. Also, we characterize the space B L O through weighted Lebesgue spaces and variable Lebesgue spaces, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom