Premium
Some characterizations of BLO space
Author(s) -
Wang Dinghuai,
Zhou Jiang,
Teng Zhidong
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201700318
Subject(s) - mathematics , lp space , corollary , norm (philosophy) , function space , space (punctuation) , lebesgue's number lemma , lebesgue integration , pure mathematics , standard probability space , discrete mathematics , riemann integral , banach space , operator theory , computer science , epistemology , philosophy , fourier integral operator , operating system
For 0 < p < ∞ , a real‐valued function f ∈ L loc 1belongs to B L O pspace if∥ f ∥B L O p : = sup Q1 | Q |∫ Qf ( x ) − essinf y ∈ Q f ( y )p d x1 / p < ∞ . In this paper, we establish a version of John–Nirenberg inequality suitable for the B L O pspace with 0 < p ≤ 1 . As a corollary, it is proved thatB L O p spaces are independent of the scale p ∈ ( 0 , ∞ ) in sense of norm. Also, we characterize the space B L O through weighted Lebesgue spaces and variable Lebesgue spaces, respectively.