Premium
Existence and asymptotic behaviour for the time‐fractional Keller–Segel model for chemotaxis
Author(s) -
Azevedo Joelma,
Cuevas Claudio,
Henriquez Erwin
Publication year - 2019
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201700237
Subject(s) - mathematics , class (philosophy) , order (exchange) , chemotaxis , pure mathematics , mathematical analysis , computer science , economics , artificial intelligence , biochemistry , chemistry , receptor , finance
One of the most important systems for understanding chemotactic aggregation is the Keller–Segel system. We consider the time‐fractional Keller–Segel system of order α ∈ ( 0 , 1 ) . We prove an existence result with small initial data in a class of Besov–Morrey spaces. Self‐similar solutions are obtained and we also show an asymptotic behaviour result.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom