z-logo
Premium
Korovkin‐type results for multivariate functions which are periodic with respect to one variable
Author(s) -
Popa Dumitru
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201700073
Subject(s) - mathematics , uniform continuity , banach space , type (biology) , sequence (biology) , corollary , algebraic number , metric space , complete metric space , variable (mathematics) , space (punctuation) , pure mathematics , metric (unit) , function (biology) , mathematical analysis , discrete mathematics , ecology , linguistics , philosophy , genetics , operations management , evolutionary biology , economics , biology
Let K be a compact metric space and letC 2 π( K × R )denote the real Banach space of all continuous functions f : K × R → R which are 2π‐periodic with respect to the second variable. We prove the following Korovkin‐type result: Letψ : K × K → [ 0 , ∞ )be a continuous algebraic separating function such thatψ ( x , x ) = 0for allx ∈ K , and letV n : C 2 π( K × R ) → C 2 π( K × R )be a sequence of positive linear operators. Iflim n → ∞V n ( ψ ( · , x ) ⊗ 1 ) ( x , t ) = 0uniformly with respect to( x , t ) ∈ K × Randlim n → ∞V n ( 1 ⊗ f ) = 1 ⊗ funiformly onK × Rfor allf ∈ { 1 , sin , cos } , thenlim n → ∞V n ( f ) = funiformly onK × Rfor everyf ∈ C 2 π( K × R ) .As a corollary we deduce: IfK = [ a , b ] , thenlim n → ∞V n ( f ) = funiformly on[ a , b ] × Rfor everyf ∈ C 2 π( [ a , b ] × R )if and only iflim n → ∞V n ( f ) = funiformly on[ a , b ] × Rfor everyf ∈ { 1 ⊗ 1 , e 1 ⊗ 1 , e 2 ⊗ 1 , 1 ⊗ sin , 1 ⊗ cos } , wheree 1 ( x ) = xande 2 ( x ) = x 2 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom