z-logo
Premium
Well‐posedness of fractional degenerate differential equations with finite delay on vector‐valued functional spaces
Author(s) -
Bu Shangquan,
Cai Gang
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600502
Subject(s) - mathematics , lp space , bounded function , multiplier (economics) , banach space , function space , mathematical analysis , degenerate energy levels , pure mathematics , c0 semigroup , finite rank operator , fractional calculus , physics , quantum mechanics , economics , macroeconomics
We study the well‐posedness of the fractional degenerate differential equations with finite delay( P α ) : D α ( M u ) ( t ) = A u ( t ) + F u t + f ( t ) , ( 0 ≤ t ≤ 2 π , α > 0 )on Lebesgue–Bochner spacesL p ( T ; X ) , periodic Besov spacesB p , q s ( T ; X )and periodic Triebel–Lizorkin spacesF p , q s ( T ; X ) , where A and M are closed linear operators on a Banach space X satisfying D ( A ) ⊂ D ( M ) , F is a bounded linear operator fromL p ( [ − 2 π , 0 ] ; X )(resp.B p , q s ( [ − 2 π , 0 ] ; X )andF p , q s ( [ − 2 π , 0 ] ; X ) ) into X , where u t is given byu t ( s ) = u ( t + s )when s ∈ [ − 2 π , 0 ] and t ∈ [ 0 , 2 π ] . Using known operator‐valued Fourier multiplier theorems, we give necessary or sufficient conditions for the well‐posedness of ( P α ) in the above three function spaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom