z-logo
Premium
Classification of surfaces in a pseudo‐sphere with 2‐type pseudo‐spherical Gauss map
Author(s) -
Bektaş Burcu,
Canfes Elif Özkara,
Dursun Uğur
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600498
Subject(s) - gauss map , mathematics , mean curvature , type (biology) , mathematical analysis , scalar curvature , gauss , gaussian curvature , surface (topology) , zero (linguistics) , curvature , constant (computer programming) , gauss–bonnet theorem , pure mathematics , geometry , mathematical physics , physics , einstein , ecology , linguistics , philosophy , quantum mechanics , biology , computer science , programming language
In this article, we study submanifolds in a pseudo‐sphere with 2‐type pseudo‐spherical Gauss map. We give a characterization theorem for Lorentzian surfaces in the pseudo‐sphereS 2 4 ⊂ E 2 5with zero mean curvature vector in S 2 4 and 2‐type pseudo‐spherical Gauss map. We also prove that non‐totally umbilical proper pseudo‐Riemannian hypersurfaces in a pseudo‐sphereS s n + 1 ⊂ E s n + 2with non‐zero constant mean curvature has 2‐type pseudo‐spherical Gauss map if and only if it has constant scalar curvature. Then, for n = 2 we obtain the classification of surfaces inS 1 3 ⊂ E 1 4with 2‐type pseudo‐spherical Gauss map. Finally, we give an example of surface with null 2‐type pseudo‐spherical Gauss map which does not appear in Riemannian case, and we give a characterization theorem for Lorentzian surfaces inS 1 3 ⊂ E 1 4with null 2‐type pseudo‐spherical Gauss map.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom