z-logo
Premium
Hardy spaces for Bessel–Schrödinger operators
Author(s) -
Kania Edyta,
Preisner Marcin
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600286
Subject(s) - bessel function , mathematics , operator (biology) , hardy space , space (punctuation) , function space , characterization (materials science) , pure mathematics , schrödinger's cat , type (biology) , function (biology) , mathematical analysis , physics , ecology , biochemistry , chemistry , linguistics , philosophy , repressor , evolutionary biology , biology , transcription factor , optics , gene
Consider the Bessel operator with a potential onL 2 ( ( 0 , ∞ ) , x αd x ) , namely L f ( x ) = − f ′ ′( x ) − α x f ′ ( x ) + V ( x ) f ( x ) . We assume that α > 0 and V ∈ L l o c 1 ( ( 0 , ∞ ) , x αd x )is a nonnegative function. By definition, a function f ∈ L 1 ( ( 0 , ∞ ) , x αd x )belongs to the Hardy spaceH 1 ( L )ifsup t > 0e − t L f ∈ L 1 ( ( 0 , ∞ ) , x αd x ) . Under certain assumptions on V we characterize the spaceH 1 ( L )in terms of atomic decompositions of local type. In the second part we prove that this characterization can be applied to L for α ∈ ( 0 , 1 ) with no additional assumptions on the potential V .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom