z-logo
Premium
On the topological type of a set of plane valuations with symmetries
Author(s) -
Campillo A.,
Delgado F.,
GuseinZade S. M.
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600198
Subject(s) - mathematics , monodromy , homogeneous space , type (biology) , pure mathematics , plane curve , plane (geometry) , group (periodic table) , polynomial , gravitational singularity , function (biology) , mathematical analysis , geometry , ecology , chemistry , organic chemistry , evolutionary biology , biology
Let { C i : i = 1 , … , r } be a set of irreducible plane curve singularities. For an action of a finite group G , letΔ L ( { t a i } )be the Alexander polynomial in r | G | variables of the algebraic link( ⋃ i = 1 r ⋃ a ∈ Ga C i ) ∩ S ε 3and let ζ ( t 1 , … , t r ) = Δ L ( t 1 , … , t 1 , t 2 , … , t 2 , … , t r , … , t r )with | G | identical variables in each group. (If r = 1 , ζ ( t ) is the monodromy zeta function of the function germ∏ a ∈ Ga ∗ f , where f = 0 is an equation defining the curve C 1 .) We prove that ζ ( t 1 , … , t r ) determines the topological type of the link L . We prove an analogous statement for plane divisorial valuations formulated in terms of the Poincaré series of a set of valuations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom