z-logo
Premium
The essential spectrum of a singular Sturm–Liouville operator
Author(s) -
Castro Hernán
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600176
Subject(s) - mathematics , essential spectrum , spectrum (functional analysis) , operator (biology) , sturm–liouville theory , absolute continuity , function (biology) , pure mathematics , mathematical analysis , quantum mechanics , physics , boundary value problem , biochemistry , chemistry , repressor , evolutionary biology , biology , transcription factor , gene
In this paper we study the essential spectrum of the operatorL A u ( x ) = − ( A ( x ) u ′ ( x ) ) ′ + u ( x )where A ( x ) is a positive absolutely continuous function on (0, 1) that resembles x 2 αfor some α ≥ 1 . We prove that the essential spectrum of L A coincides with the essential spectrum of the operatorL α u ( x ) : = − ( x 2 αu ′ ( x ) ) ′ + u ( x ) .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom