z-logo
Premium
The Brezis–Nirenberg problem for fractional elliptic operators
Author(s) -
Chen KoShin,
Montenegro Marcos,
Yan Xiaodong
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600072
Subject(s) - mathematics , operator (biology) , nirenberg and matthaei experiment , elliptic operator , bounded function , boundary (topology) , divergence (linguistics) , eigenvalues and eigenvectors , dirichlet distribution , mathematical analysis , pure mathematics , dirichlet boundary condition , zero (linguistics) , boundary value problem , biochemistry , chemistry , linguistics , philosophy , physics , repressor , quantum mechanics , transcription factor , gene
Let L = div ( A ( x ) ∇ ) be a uniformly elliptic operator in divergence form in a bounded open subset Ω of R n . We study the effect of the operator L on the existence and nonexistence of positive solutions of the nonlocal Brezis–Nirenberg problem( − L ) s u=u n + 2 s n − 2 s+ λ uin Ω ,u = 0on ∂ Ωwhere( − L ) s denotes the fractional power of − L with zero Dirichlet boundary values on ∂ Ω , 0 < s < 1 , n > 2 s and λ is a real parameter. By assuming A ( x ) ≥ A ( x 0 )for all x ∈ Ω ¯and A ( x ) ≤ A ( x 0 ) + | x − x 0 | σ I nnear some pointx 0 ∈ Ω ¯ , we prove existence theorems for any λ ∈ ( 0 , λ 1 , s( − L ) ) , whereλ 1 , s( − L )denotes the first Dirichlet eigenvalue of( − L ) s . Our existence result holds true for σ > 2 s and n ≥ 4 s in the interior case ( x 0 ∈ Ω ) and for σ > 2 s ( n − 2 s ) n − 4 sand n > 4 s in the boundary case ( x 0 ∈ ∂ Ω ). Nonexistence for star‐shaped domains is obtained for any λ ≤ 0 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom