z-logo
Premium
Existence of solutions to a non‐variational singular elliptic system with unbounded weights
Author(s) -
Cave L. M.,
Oliva F.,
Strani M.
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600038
Subject(s) - mathematics , bounded function , lebesgue integration , operator (biology) , laplace operator , pure mathematics , p laplacian , open set , mathematical analysis , set (abstract data type) , biochemistry , chemistry , repressor , computer science , transcription factor , programming language , gene , boundary value problem
In this paper we prove an existence result for the following singular elliptic systemz > 0 in Ω , z ∈ W 0 1 , p( Ω ):− Δ p z = a ( x ) z q − 1u θ,u > 0 in Ω , u ∈ W 0 1 , p( Ω ):− Δ p u = b ( x ) z q u θ − 1,where Ω is a bounded open set in error N ( N ≥ 2 ), − Δ pis the p ‐laplacian operator, a ( x ) and b ( x ) are suitable Lebesgue functions and q > 0 , 0 < θ < 1 , p > 1 are positive parameters satisfying suitable assumptions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom