Premium
Quasilinear Schrödinger equations with unbounded or decaying potentials
Author(s) -
Severo Uberlandio B.,
de Carvalho Gilson M.
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201600028
Subject(s) - mathematics , infinity , class (philosophy) , minimax , space (punctuation) , type (biology) , order (exchange) , pure mathematics , mathematical analysis , schrödinger equation , mathematical optimization , linguistics , philosophy , ecology , finance , artificial intelligence , computer science , economics , biology
We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrödinger equations:− Δ u + V ( | x | ) u − [ Δ ( u 2 ) ] u = Q ( | x | ) g ( u ) , x ∈ R N ,u ( x ) → 0as| x | → ∞ ,where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result.