z-logo
Premium
Positive solutions of Kirchhoff type elliptic equations in R 4 with critical growth
Author(s) -
Liu Zhisu,
Guo Shangjiang,
Fang Yanqin
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500358
Subject(s) - mathematics , sobolev space , lemma (botany) , critical exponent , compact space , mathematical analysis , mountain pass , nonlinear system , exponent , type (biology) , elliptic curve , term (time) , pure mathematics , geometry , physics , ecology , linguistics , philosophy , poaceae , quantum mechanics , scaling , biology
In this paper, we study the following Kirchhoff type elliptic problem with critical growth:− a + b ∫ R 4| ∇ u | 2 d x ▵ u + u = f ( u ) + β | u | 2 uinR 4 ,u ∈ H 1 ( R 4 ) , u > 0inR 4 ,where a , β > 0 , and b ≥ 0 , and the nonlinear growth term| u | 2 u reaches the Sobolev critical exponent since2 ∗ = 4 for four spatial dimensions. In a non‐radial symmetric function space, we establish a local compactness splitting lemma of critical version to investigate the existence of positive ground state solutions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here