z-logo
Premium
Exponential convergence in L p ‐Wasserstein distance for diffusion processes without uniformly dissipative drift
Author(s) -
Luo Dejun,
Wang Jian
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500351
Subject(s) - mathematics , dissipative system , exponential function , constant (computer programming) , convex function , diffusion , convergence (economics) , regular polygon , exponential decay , mathematical analysis , geometry , physics , quantum mechanics , computer science , nuclear physics , economics , thermodynamics , programming language , economic growth
By adopting the coupling by reflection and choosing an auxiliary function which is convex near infinity, we establish the exponential convergence of diffusion semigroups( P t ) t ≥ 0with respect to the standard L p ‐Wasserstein distance for all p ∈ [ 1 , ∞ ) . In particular, we show that for the Itô stochastic differential equation d X t = d B t + b ( X t )d t , if the drift term b is such that for any x , y ∈ R d ,⟨ b ( x ) − b ( y ) , x − y ⟩ ≤K 1| x − y | 2 ,| x − y | ≤ L ;− K 2| x − y | 2 ,| x − y | > Lholds with some positive constants K 1 , K 2 and L > 0 , then there is a constant λ : = λ ( K 1 , K 2 , L ) > 0 such that for all p ∈ [ 1 , ∞ ) , t > 0 and x , y ∈ R d ,W p ( δ x P t , δ y P t ) ≤ C e − λ t / p| x − y | 1 / p ,if| x − y | ≤ 1 ;| x − y | ,if| x − y | > 1where C : = C ( K 1 , K 2 , L , p ) is a positive constant. This improves the main result in [14][A. Eberle, ] where the exponential convergence is only proved for the L 1 ‐Wasserstein distance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom