Premium
Ground states for a nonhomogeneous elliptic system involving Hardy–Sobolev critical exponents
Author(s) -
Guo Zhenyu
Publication year - 2017
Publication title -
mathematische nachrichten
Language(s) - Slovenian
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500348
Subject(s) - sobolev space , mathematics , bounded function , critical exponent , domain (mathematical analysis) , ground state , elliptic curve , mathematical analysis , state (computer science) , pure mathematics , geometry , physics , quantum mechanics , algorithm , scaling
This paper studies the following nonhomogeneous elliptic system involving Hardy–Sobolev critical exponentsΔ u + λ 1u p − 1| x | s+ μ 1u 2 * ( s 1 ) − 1| x | s 1+α γ2 * ( s 2 )u α − 1v β| x | s 2= 0inΩ ,Δ v + λ 2v p − 1| x | s+ μ 2v 2 * ( s 1 ) − 1| x | s 1+β γ2 * ( s 2 )u α v β − 1| x | s 2= 0inΩ ,u ≥ 0 , v ≥ 0inΩ , u = 0 , v = 0on∂ Ω ,whereλ 1 , λ 2 , μ 1 , μ 2 , γ > 0 , 2 < p < 2 * ( s ) : = 2 ( N − s ) N − 2 , 0 ≤ s < 2 , 0 < s 1 , s 2 < 2 , α , β > 1 , α + β = 2 * ( s 2 ) , Ω is a C 1 open bounded domain in R N containing the origin, and N ≥ 4 . The existence result of positive ground state solution is established.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom