Premium
Nonradial positive solutions of the p ‐Laplace Emden–Fowler equation with sign‐changing weight
Author(s) -
Kajikiya Ryuji
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500103
Subject(s) - mathematics , laplace's equation , mathematical analysis , dirichlet boundary condition , unit sphere , sign (mathematics) , laplace transform , ball (mathematics) , dirichlet problem , boundary value problem , weight function
In this paper we study the p ‐Laplace Emden–Fowler equation with a radial and sign‐changing weight in the unit ball under the Dirichlet boundary condition. We show that if the weight function is negative in the unit ball except for a small neighborhood of the boundary and positive at somewhere in this neighborhood, then no least energy solution is radially symmetric. Therefore the equation has both a positive radial solution and a positive nonradial solution. Moreover, we prove in the one dimensional case that if the neighborhood is large, then a positive solution is unique.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom