Premium
Reduction theorems for Sobolev embeddings into the spaces of Hölder, Morrey and Campanato type
Author(s) -
Holík Miloslav
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500043
Subject(s) - mathematics , sobolev space , embedding , interpolation space , pure mathematics , differentiable function , banach space , birnbaum–orlicz space , type (biology) , sobolev inequality , invariant (physics) , mathematical analysis , functional analysis , ecology , biochemistry , chemistry , artificial intelligence , biology , computer science , mathematical physics , gene
Let X be a rearrangement‐invariant Banach function space on Q where Q is a cube in R n and letV 1 X ( Q )be the Sobolev space of real‐valued weakly differentiable functions f satisfying | ∇ f | ∈ X ( Q ) . We establish a reduction theorem for an embedding of the Sobolev spaceV 1 X ( Q )into spaces of Campanato, Morrey and Hölder type. As a result we obtain a new characterization of such embeddings in terms of boundedness of a certain one‐dimensional integral operator on representation spaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom