z-logo
Premium
Single blowup point for a semilinear reaction‐diffusion system
Author(s) -
Zhang Zhengce,
Huang Yaodan
Publication year - 2018
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400335
Subject(s) - semigroup , mathematics , reaction–diffusion system , point (geometry) , diffusion , set (abstract data type) , set point , pure mathematics , mathematical analysis , geometry , computer science , thermodynamics , physics , control engineering , engineering , programming language
Abstract Throughout this paper, we investigate the blowup set for the semilinear reaction‐diffusion systemu t=Δ u + f ( u , v ) ,x ∈ Ω , t > 0 ,v t=Δ v + g ( u , v ) ,x ∈ Ω , t > 0 ,u ( x , t )=v ( x , t ) = 0 ,x ∈ ∂ Ω , t > 0 ,u ( x , 0 )=u 0 ( x ) ,v ( x , 0 ) = v 0 ( x ) ,x ∈ Ω ,where Ω = B R : = { x ∈ R n ; | x | < R } andu 0 ( x ) , v 0 ( x ) ∈ L ∞ ( Ω ) . The initial datau 0 ( x )andv 0 ( x )are positive, radially symmetric and decreasing. Under certain assumptions on f and g , we prove that the solution of this system blows up only at the origin. The proof is based on the Friedman–McLeod method, comparison principle and semigroup method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here