z-logo
Premium
Positive solutions of nonlinear Schrödinger equation with peaks on a Clifford torus
Author(s) -
Santra Sanjiban,
Wei Juncheng
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400321
Subject(s) - torus , mathematics , nonlinear system , nonlinear schrödinger equation , mathematical analysis , clifford algebra , mathematical physics , schrödinger equation , clifford torus , function (biology) , pure mathematics , algebra over a field , geometry , physics , quantum mechanics , evolutionary biology , biology
We prove the existence of large energy positive solutions for a stationary nonlinear Schrödinger equation Δ u − V ( x ) u + u p = 0inR Nwith peaks on a Clifford type torus. HereV ( x ) = V ( r 1 , r 2 , ⋯ , r s )=1 + 1 ( a 1 r 1 m + a 2 r 2 m + a 3 r 3 m + ⋯ + a s r s m )+ O 1 ( a 1 r 1 m + a 2 r 2 m + a 3 r 3 m + ⋯ + a s r s m ) 1 + τwhereR N = R N 1 × R N 2 × ⋯ × R N s , withN i ≥ 2 for all i = 1 , 2 , ⋯ , s ,m > 1 , τ > 0 , r i = | x i | . Each r i is a function r , ϕ 1 , ⋯ , ϕ i − 1and is defined by the generalized notion of spherical coordinates. The solutions are obtained by a max ( r , ϕ 1 , ⋯ , ϕ s − 1 )or amax r min ( ϕ 1 , ⋯ , ϕ s − 1 )process.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom