Premium
Conformal spectral stability estimates for the Dirichlet Laplacian
Author(s) -
Burenkov V. I.,
Gol'dshtein V.,
Ukhlov A.
Publication year - 2015
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400253
Subject(s) - mathematics , dirichlet eigenvalue , conformal map , laplace operator , mathematical analysis , eigenvalues and eigenvectors , bounded function , pure mathematics , hausdorff dimension , dirichlet distribution , complex plane , boundary (topology) , dirichlet boundary condition , boundary value problem , dirichlet's principle , physics , quantum mechanics
We study the eigenvalue problem for the Dirichlet Laplacian in bounded simply connected plane domains Ω ⊂ C by reducing it, using conformal transformations, to the weighted eigenvalue problem for the Dirichlet Laplacian in the unit disc D . This allows us to estimate the variation of the eigenvalues of the Dirichlet Laplacian upon domain perturbation via energy type integrals for a large class of “conformal regular” domains which includes all quasidiscs, i.e. images of the unit disc under quasiconformal homeomorphisms of the plane onto itself. Boundaries of such domains can have any Hausdorff dimension between one and two.