z-logo
Premium
On a p ( x ) ‐Kirchhoff equation with critical exponent and an additional nonlocal term via truncation argument
Author(s) -
Corrêa Francisco Julio S. A.,
Costa Augusto César dos Reis
Publication year - 2015
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400198
Subject(s) - mathematics , bounded function , truncation (statistics) , sobolev space , exponent , critical exponent , mathematical analysis , multiplicity (mathematics) , term (time) , domain (mathematical analysis) , pure mathematics , mathematical physics , scaling , physics , geometry , quantum mechanics , statistics , philosophy , linguistics
We study existence and multiplicity of solutions of the following nonlocal p ( x ) ‐Kirchhoff equation with critical exponent, via truncation argument on the Sobolev space with variable exponent,− M ∫ Ω 1 p ( x )| ∇ u | p ( x )Δ p ( x ) u=λ f ( x , u )∫ Ω F ( x , u )r + | u | q ( x ) − 2 u ,inΩ ,u =0 ,on∂ Ω ,where Ω is a bounded smooth domain ofR N , p , q ∈ C ( Ω ¯ ) , M , f are continuous functions, 1 < p ( x ) < N , F ( x , u ) = ∫ 0 u f ( x , ξ )d ξ and λ , r > 0 are real parameter.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom