Premium
m‐Microlocal elliptic pseudodifferential operators acting on L loc p ( Ω )
Author(s) -
Garello Gianluca,
Morando Alessandro
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400151
Subject(s) - pseudodifferential operators , mathematics , sobolev space , microlocal analysis , gravitational singularity , differential operator , homogeneous , extension (predicate logic) , elliptic operator , pure mathematics , class (philosophy) , fourier integral operator , mathematical analysis , space (punctuation) , operator theory , combinatorics , linguistics , philosophy , artificial intelligence , computer science , programming language
In the first part of the paper we study the minimal and maximal extension of a class of weighted pseudodifferential operators in the Fréchet spaceL loc p ( Ω ) . In the second one non homogeneous microlocal properties are introduced and propagation of Sobolev singularities for solutions to (pseudo)differential equations is given. For both the arguments actual examples are provided.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom