z-logo
Premium
Well‐posedness of second order degenerate integro‐differential equations with infinite delay in vector‐valued function spaces
Author(s) -
Cai Gang,
Bu Shangquan
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400112
Subject(s) - mathematics , function space , mathematical analysis , banach space , lp space , multiplier (economics) , degenerate energy levels , c0 semigroup , vector valued function , bochner space , order (exchange) , pure mathematics , banach manifold , physics , finance , quantum mechanics , economics , macroeconomics
We study the well‐posedness of the second order degenerate differential equations with infinite delay:( M u ) ′ ′( t )= A u ( t ) + ∫ − ∞ t a ( t − s ) A u ( s )d s + ∫ − ∞ t b ( t − s ) B u ( s )d s + f ( t ) , ( 0 ≤ t ≤ 2 π )with periodic boundary conditions( M u ) ( 0 ) = ( M u ) ( 2 π ) , ( M u ) ′ ( 0 ) = ( M u ) ′ ( 2 π ) , where A , B and M are closed linear operators in a Banach space satisfying D ( A ) ∩ D ( B ) ≠ { 0 } , D ( A ) ∩ D ( B ) ⊂ D ( M ) , a , b ∈ L 1 ( R + ) . Using operator‐valued Fourier multiplier techniques, we give necessary and sufficient conditions for the well‐posedness of this problem in Lebesgue‐Bochner spacesL p ( T ; X ) , periodic Besov spacesB p , q s ( T ; X )and periodic Triebel‐Lizorkin spacesF p , q s ( T ; X ) .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom