Premium
Subgroups and homology of extensions of centralizers of pro‐ p groups
Author(s) -
Kochloukova Dessislava,
Zalesskii Pavel
Publication year - 2015
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201400104
Subject(s) - mathematics , abelian group , finitely generated abelian group , homology (biology) , locally finite group , pure mathematics , normal subgroup , combinatorics , property (philosophy) , group (periodic table) , amino acid , chemistry , biochemistry , philosophy , organic chemistry , epistemology
We study the growth of dim H j ( U , F p ) , where U is an open subgroup of G ∈ L and L is a special class of pro‐ p groups defined in [7][D. Kochloukova, 2011]. Furthermore for G ∈ L non‐abelian we prove the core property: for pro‐ p subgroups N ≤ H ≤ G such that H is finitely generated and N is non‐trivial normal in G the index [ G : H ] is always finite.